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 The Internet of Things (IoT) expansion increases the number and size of 

networks and the volume of sensitive and private data. Consequently, IoT 

networks have become vulnerable to various threats and attacks. Researchers 

have recently devised intrusion detection systems (IDSs) to detect threats and 

attacks on IoT networks. However, in developing IDS for IoT networks, 

previous studies predominantly used more limited datasets to depict the actual 

IoT network characteristics. Thus, this research used datasets containing 

network flow records from real IoT networks, namely the NF-ToN-IoT-V2 

and IoTID20. Various machine-learning algorithms, such as random forest, 

decision tree, naïve Bayes, AdaBoost, and XGBoost, were employed to train 

and evaluate the datasets for developing intrusion detection models. We 

investigated the model's performance based on accuracy, precision, recall, 

F1-score, false positive rate, training, and testing time utilization. We used 

the chi-square algorithm for feature selection to select the most relevant and 

valuable features. The findings indicate that implementing feature selection 

using chi-square improves the performance of the detection system models. 

By applying the Chi-Square algorithm, the RF model that outperforms in 

terms of accuracy performance increases its accuracy up to 0.42% on the NF-

ToN-IoT-V2 testing and 0.16% on the IoTID20 testing. The DT model with 

the fastest training and testing time reduces its time utilization by 6.98% on 

the NF-ToN-IoT-V2 testing and 29.63% on the IoTID20 testing through 

feature selection. 
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1. INTRODUCTION  

A fast-developing technical advancement, the Internet of Things (IoT) allows gadgets to identify their 

surroundings, interact online, and share data with little human assistance [1]. By 2030, IoT will generate vast 

traffic [2, 3], requiring the integration of various devices and equipment. However, the enormous amount of 

sensitive and private data generated by IoT devices makes it vulnerable to security attacks, making 

safeguarding it a crucial task. Low-security measures can be compromised by network malfunctions, data theft, 

accidents, intruders, malicious software, and viruses [4, 5].  

Intrusion detection systems (IDS) are crucial in securing networks by detecting anomalous conditions and 

malicious activity, preventing unauthorized access, and detecting real-time data packets, making them popular 

for safeguarding IoT devices [6-8].  
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Cybersecurity solutions often rely on artificial intelligence, particularly in intrusion detection systems. 

Machine learning (ML) and deep learning (DL) approaches are used to develop these systems, requiring large 

datasets for accurate evaluation. ML enables computers to learn automatically and manage actions with 

minimal human involvement [9, 10], while DL improves systems' ability to recognize anomalous conditions. 

DL-based IDS have low false positive rates and greater accuracy, but their high complexity and size make 

implementation challenging, especially in IoT networks with more storage and processing capabilities [11-15]. 

Machine-learning-trained data and current network traffic datasets are necessary to develop an effective 

intrusion detection system (IDS) [16]. Antiquated network traffic is insufficient for capturing the authentic 

performance of intrusion detection systems in the current network environment [17]. UNSW_NB15 and NSL-

KDD datasets have been extensively used in previous research but are not current with current network 

traffic. More IoT sensor data is needed to understand network system dynamics. IoTID20 and NetToN-IoT-

V2 are IoT infrastructure datasets that depict genuine network models. The IoTID20 dataset, developed in 

2020, collects data from IoT devices and connected object networks [18]. The NF-ToN-IoT-V2 dataset 

improves the IDS machine-learning algorithm's F1 score and detection precision [19], offering better intrusion 

detection results than the ToN-IoT dataset, which is the old version of NF-ToN-IoT-V2. Therefore, datasets 

such as the NF-ToN-IoT-V2 and IoTID20 that are capable of implying real IoT networks should be utilized to 

experimentally build intrusion detection models for IoT networks. 

The accuracy of network intrusion detection systems relies on removing irrelevant features and 

incorporating only pertinent information [20]. Researchers have explored effective feature-selection techniques 

to improve classification results. The challenge lies in selecting essential characteristics without compromising 

classification accuracy, as different characteristics contribute differently to attack detection. The feature space 

significantly affects the accuracy of ML and DL-based approaches [21-23]. 

In this study, we investigated the performance of machine learning-based intrusion detection models for 

IoT networks using real dataset of IoT networks. It uses NF-ToN-IoT-V2 and IoTID20 datasets to be trained 

and tested using various algorithms. The Chi-square algorithm is used for feature selection, reducing irrelevant 

features and improving model performance. The study also investigates training and testing time, focusing on 

accuracy, precision, recall, F1 score, false positive rate, training, and testing time utilization. The results are 

evaluated to determine the best results for IoT networks. 

 

2. METHODS  

Through training and testing on the datasets using machine learning algorithms, this research aimed to 

build intrusion detection models that could effectively find attacks on the real IoT networks. A conceptual 

overview of the approach we suggest is depicted in Fig. 1. The IDS model was linked to IoT network nodes or 

devices in the actual IoT network implementation. Through this link, the IDS network acquired raw packets 

from the IoT network, which the IDS model subsequently extracted and evaluated. 

The ML-based intrusion detection models were developed and evaluated by applying the Sci-kit-learn 

library in Python 3.9 and 64-bit ARM CPU architecture. The model was constructed on the cloud layer and 

utilized datasets for training and testing. At the onset of intrusion detection model development, feature 

selection was performed to reduce imbalanced data features in the dataset. In addition, five ML algorithms 

were deployed to train and evaluate datasets. After the study, the test results were analyzed using evaluation 

metrics, and the algorithm with the best performance was determined.  

 

 
Fig. 1. The conceptual framework of the proposed system 
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2.1. Data Preparation and Processing 

2.1.1. Dataset  

This study utilized NF-ToN-IoT-V2 and leveraged IoTID20 as a benchmark dataset. The NF-ToN-IoT-

V2 dataset contains network flow records from an IoT network. It is the latest version of NF-ToN-IoT and one 

of the datasets released by The University of Queensland, Australia. The ToN-IoT dataset's currently accessible 

packet capture files (pcaps) produce NetFlow records. This dataset has ten classes, including binary normal 

and anomaly [19]. The overall data flow is 16,940,496, with 63.99% attacks and 36.01% benign. Fig. 2 depicts 

the class distribution of the NF-ToN-IoT-V2 dataset.  

 
Fig. 2. Class distribution of NF-ToN-IoT-V2 dataset 

Ullah and Mahmoud [24] adopted Kang's study [25] on various network attacks in the IoT environment 

and named it the IoTID20 dataset. This dataset represents current IoT network communication trends. The 

complete IoTID20 includes 83 network-specific features and 3 label features. Fig. 3 shows the graph of how 

the category labels are spread out in the IoTID20 dataset, which has 625,415 events.  

 
Fig. 3. Category distribution of IoTID20 dataset 

2.1.2. Feature Selection 

Implementation of the feature selection algorithm is a crucial stage in determining the optimal set of 

features that can be employed to distinguish benign from malicious traffic [26]. This process improves the time 

required for computation [21]. The Chi-square algorithm is considered when determining the optimal set of 

features. This algorithm determines the independence between a characteristic and its respective class label. It 

takes into account the feature dimension values and labels. The symbols in the calculation consist of 𝑝, 𝑞, 𝑟, 
and 𝑠, as shown in Equation (1). "𝑝" symbolizes the frequency with which 𝑡 and 𝑐 co-occur; “𝑞" symbolizes 

the frequency with which 𝑡 occurs without 𝑐; "𝑟" symbolizes the frequency with which 𝑐 occurs without 𝑡; "𝑠" 
denotes the frequency with which neither 𝑡 nor 𝑐 occurs; N shows the total number of instances recorded in the 

dataset; 𝑡 and 𝑐 represent the examined feature dimension and label [26-28]. The Chi-square formula is shown 

in the following equation:  

 

𝑥2(𝑡, 𝑐) =
𝑁(𝑝𝑠 − 𝑞𝑟)2

(𝑝 + 𝑟)(𝑞 + 𝑠)(𝑝 + 𝑞)(𝑟 + 𝑠)
 (1) 
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The dataset was preprocessed before the features were optimized using feature selection techniques. Table 

1 presents the pseudocode algorithm for feature selection employing the sci-kit-learn library.  

Table 1. Pseudocode for feature selection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We determined the number of selected features denoted by 𝑘. For NF-ToN-IoT-V2, which has 45 feature 

columns, the value of 𝑘 was determined to vary between 10, 25, and 35. Fig. 4 shows the feature selection 

results for the NF-ToN-IoT-V2 using Chi-square selector.  

 
Fig. 4. Feature selection results for NF-ToN-IoT-V2 dataset 

Algorithm 1: Feature selection procedures 

Input 

 𝑑𝑎𝑡𝑎_𝑠𝑒𝑡 : dataset 

 𝑘_𝑐𝑜𝑢𝑛𝑡_𝑜𝑓_𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒 : total feature defined 

 𝑑𝑟𝑜𝑝_𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑖𝑛_𝑑𝑎𝑡𝑎: list of non-calculated  

 → will be discarded 

Output 

 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 : the selected features 

Step 1. load the input 𝑑𝑎𝑡𝑎_𝑠𝑒𝑡 

Step 2. load the input 𝑘_𝑐𝑜𝑢𝑛𝑡_𝑜𝑓_𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒 

Step 3. load the input 𝑑𝑟𝑜𝑝_𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑖𝑛_𝑑𝑎𝑡𝑎 

Step 4. drop data containing features or field headers 

 referred to the list 𝑑𝑟𝑜𝑝_𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑖𝑛_𝑑𝑎𝑡𝑎  

 → set it to 𝑑𝑎𝑡𝑎_𝑎𝑙𝑙_𝑐𝑙𝑒𝑎𝑛. 

Step 5. obtain the outcome data from 𝑑𝑎𝑡𝑎_𝑎𝑙𝑙_𝑐𝑙𝑒𝑎𝑛, referred to 

 field name from 𝑓𝑖𝑒𝑙𝑑_𝑡𝑎𝑟𝑔𝑒𝑡_𝑜𝑢𝑡𝑐𝑜𝑚𝑒  

 → put it to 𝑑𝑎𝑡𝑎_𝑜𝑢𝑡_𝑐𝑜𝑚𝑒 

Step 6. run 𝑟𝑢𝑛_𝑐ℎ𝑖_𝑠𝑞𝑢𝑎𝑟𝑒 with the input parameters  

 𝑑𝑎𝑡𝑎_𝑎𝑙𝑙_𝑐𝑙𝑒𝑎𝑛  

 𝑘_𝑐𝑜𝑢𝑛𝑡_𝑜𝑓_𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒  

 𝑑𝑎𝑡𝑎_𝑜𝑢𝑡_𝑐𝑜𝑚𝑒  

 → insert to 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 
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We decided that the number of selected features for the IoTID20 dataset should range from 20 to 45 
and 59. Fig. 5 depicts the feature selection results for the IoTID20 using the Chi-square selector. 
 

 
Fig. 5. Feature selection results for the IoTID20 dataset 

2.2. Training and Testing 
The training and testing stages are essential in the development of an IDS. In this study, we used ML 

techniques that estimate the value of a new sample on the basis of patterns discovered in a large 
dataset. Multiple ML algorithms were implemented, including Random Forest, Decision Tree, Naïve Bayes, 
AdaBoost, and XGBoost. The intrusion detection model in this study was developed using the Python 
programming language and modules from the Scikit-learn library. One of the hyperparameters set was 
𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟s in the random forest algorithm. The 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟s is the number of trees that must be 
implemented. The number of trees in this research was determined at 50 (𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟s = 50). Thus, a random 
forest will create 50 decision trees, each trained with a random subset of the data and features, and then combine 
them to make the final decision. Apart from the 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 in the random forest algorithm, the 
hyperparameters in the other algorithms are applied following the default settings of the Scikit-learn library. 
Some of the hyperparameters that follow the default settings are as follows: 𝑚𝑎𝑥⁡ _𝑑𝑒𝑝𝑡ℎ = 𝑁𝑜𝑛𝑒⁡(𝑖𝑛𝑡), 
𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 = 𝑁𝑜𝑛𝑒(𝑖𝑛𝑡) and 𝑠𝑝𝑙𝑖𝑡𝑡𝑒𝑟 = 𝑏𝑒𝑠𝑡 for Decision Tree; 𝑣𝑎𝑟_𝑠𝑚𝑜𝑜𝑡𝑖𝑛𝑔 = 1𝑒 − 9(𝑓𝑙𝑜𝑎𝑡) and 
𝑝𝑟𝑖𝑜𝑟𝑠 = 𝑁𝑜𝑛𝑒 for Naïve Bayes; 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 50(𝑖𝑛𝑡), 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 1.0(𝑓𝑙𝑜𝑎𝑡), and 
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 = 𝑁𝑜𝑛𝑒 for AdaBoost classifier; and 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.1(𝑓𝑙𝑜𝑎𝑡) and 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒 =
1.0(𝑓𝑙𝑜𝑎𝑡) for Extreme Gradient Boost Classifier (XGBoost). 
 
2.3. Performance Evaluation Metrics 

Multiple metrics are utilized to investigate the effectiveness of an ML-based IDS. Four parameters are 

needed to calculate system performance: true positive (TP), true negative (TN), false positive (FP) and false 

negative (FN). 

a) Accuracy 
Accuracy score (Acc) is the most often used metric to evaluate model performance in binary classification 
conditions. It is calculable as 
 

𝐴𝑐𝑐 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) (4) 

 

b) Precision 
Precision (Prec) is defined as the classification capability of the model system to precisely identify attacks 
out of the total number of correct predictions. It is calculable as: 
 

𝑃𝑟𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5) 
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c) Recall 
Recall or detection rate (DR) is a metric of how well the model IDS detects true positive samples, which 
means it correctly distinguishes attacks from actual attacks. It is referred to as the true positive 
rate or sensitivity. It is calculable as:  
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 

 

d) F1 Score 
The F1 score is the compromise between precision and recall that considers false positive and false 
negative. It is calculable as: 
 

𝐹1⁡𝑆𝑐𝑜𝑟𝑒 = 2 × (
𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
) =

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (7) 

e) False Positive Rate 
The false positive rate (FPR) is determined as the ratio of the error when normal samples are predicted as 
positive attacks to the total quantity of normal samples. It implies an excessive estimation that incorrectly 
necessitates human intervention. When detecting intrusions, less FN is required because it is more 
dangerous than FP. The FPR is calculable as 

 

𝐹𝑎𝑙𝑠𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒⁡𝑅𝑎𝑡𝑒 = ⁡
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (8) 

 

3. RESULTS AND DISCUSSION  

The intrusion detection models were built using several ML algorithms: RF, DT, NB, AdaBoost, and 

XGBoost. We used several groups of NF-ToN-IoT-V2 and IoTID20 datasets for training and testing, which 

were previously selected using the Chi-square algorithm. The dataset groups were divided on the basis of the 

value of 𝑘 (number of selected features), namely 𝑘 groups 10, 25, and 35 for the NF-ToN-IoT-V2 and 𝑘 20, 

40, and 59 for the IoTID20. The test-size parameter was used to define the size of the testing data divided into 

three groups, namely, 20%, 50%, and 80% of the entire NF-ToN-IoT-V2 and IoTID20.  

Table 2 lists the results of evaluating the NF-ToN-IoT-V2 with 𝑘⁡ = ⁡10 and 𝑘⁡ = ⁡25, and Table 3 lists 

the results of assessing with 𝑘⁡ = ⁡35. The RF model produced the highest accuracy of 96.58% with 𝑘⁡ = ⁡35. 

The DT model achieved an accuracy value of 96.05% with 𝑘⁡ = ⁡35. The RF model achieved the highest 

precision value of 99.54%, and the DT model gained 98.91%. The best recall and F1 scores were 91.73% and 

95.48%, both achieved by the RF algorithm at 𝑘⁡ = ⁡35. From Table 2 and Table 3, we see that 𝑘 could affect 

the performance value of the system model. The resulting model performance value was better when applying 

a dataset with a more significant number of selection features (indicated by a larger 𝑘⁡value). 

However, the differentiation value is evident when we talk about the FPR. There is no expectation of a 

high value from the FPR measurement results. Unlike other performances, the expected value of the FPR metric 

measurement was the lowest. This finding indicated that the smaller the measurement value when normal 

samples are misclassified as positive attacks compared to the total number of truly normal samples, the better 

the performance. In applying attack detection systems in IoT networks, suppressing the number of false 

positives is essential to maintain the smooth operation, efficiency, and reliability of the detection system 

applied to services that utilize high-risk IoT. The development of detection models must consider the trade-off 

between sensitivity and precision so that the system remains responsive without causing unnecessary 

interference. Health services, industry, and plantation land monitoring are examples of high-risk IoT 

applications. As in health services, false detections can cause systems to block legitimate devices or services 

automatically, halt production processes, or cut off critical communications. Similar to industrial operations, 

FPR generates false alarms that require manual action. Such behavior increases the workload for security teams 

and engineers and removes resources that should be focused on real threats. Frequent false alarms lead 

operators to disregard warnings, heightening the danger that genuine threats will be overlooked. In IoT systems 

vulnerable to delays or disruptions, such as medical equipment or smart grids, false positives might result in 

diminished efficiency, postponed responses, or even safety risks. 

In the results of the IoTID20 dataset testing shown in Table 4 and Table 5, the accuracy values achieved 

by the RF and DT models outperformed the other models. RF produced 98.89% accuracy, and DT achieved 

98.53% accuracy. The RF algorithm obtained the best precision, F1 score, and FPR with percentages of 87.62, 
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92.2%, and 0.987%, respectively. The XGBoost model achieved the best recall with a 100% rate. However, 

the precision value obtained by the XGBoost model was relatively low, at 38-57%. 

Table 2. NF-ToN-IoT-V2 dataset evaluation results of the model with 𝑘 = 10 and 𝑘 = 25 
Algorithm Performance Metrics (%) 

𝒌⁡ = ⁡𝟏𝟎 𝒌⁡ = ⁡𝟐𝟓 

Test 
size 
(%) 

Acc Prec Recall F1 score FPR Acc Prec Recall F1 score FPR 

Random 
Forest 

20 91.29 94.75 84.62 89.4 3.59 95.48 99.27 89.5 94.13 0.45 
50 91.28 94.75 84.6 89.38 3.6 95.47 99.27 89.48 94.12 0.45 
80 91.27 94.74 84.58 89.37 3.6 95.46 99.27 89.46 94.11 0.45 

Decision 
Tree 

20 90.42 93.99 83.65 88.52 4.26 94.93 98.66 88.92 93.54 0.85 
50 90.27 93.82 83.47 88.36 4.35 94.89 98.62 88.87 93.49 0.87 
80 90.05 93.66 83.18 88.11 4.48 94.83 98.56 88.79 93.42 0.91 

Naïve 
Bayes 

20 47.89 1.86 78.29 3.67 52.62 54.01 2.26 87.8 4.42 46.46 
50 20.83 1.87 77.96 3.67 80.37 54.02 2.26 87.7 4.42 46.45 
80 14.11 1.91 77.66 3.75 87.35 53.97 2.42 82.62 4.72 46.51 

Adaboost 20 85.74 92.04 78.59 84.79 6.95 58.4 87.57 47.88 61.91 16.33 
50 78.68 89.01 68.21 77.24 9.5 69.58 83.38 58.93 69.06 15.96 
80 76.81 91.17 64.01 76.86 3.85 68.83 81.94 59.54 68.96 18.25 

XGBoost 20 86.05 88.31 80.8 84.39 9.36 88.89 85.18 86.76 85.96 9.74 
50 86.02 88.3 80.77 84.37 9.37 88.88 85.18 86.74 85.96 9.74 
80 85.69 88.38 80.14 84.06 9.37 88.98 85.23 86.85 86.03 9.66 

 

Table 3. NF-ToN-IoT-V2 dataset evaluation results of the model with 𝑘 = 35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. IoTID20 dataset evaluation results of the model with 𝑘 = 20 and 𝑘 = 40 

Algorithm 

Performance Metrics (%) 

𝒌⁡ = ⁡𝟐𝟎 𝒌⁡ = ⁡𝟒𝟎 

Test size 

(%) 
Acc Prec Recall F1 score FPR Acc Prec Recall F1 score FPR 

Random 

Forest 

20 98.78 86.46 97.17 91.5 1.1 98.89 87.54 97.28 92.15 0.99 

50 98.75 85.92 97.13 91.18 1.13 98.84 86.77 97.22 91.7 1.05 
80 98.77 85.91 97.25 91.23 1.17 98.84 86.71 97.3 91.7 1.04 

Decision 

Tree 

20 98.46 83.18 96.11 89.18 1.37 98.53 83.99 95.97 89.58 1.29 

50 98.43 83.37 95.17 88.88 1.33 98.54 84.6 95.19 89.58 1.22 
80 98.24 82.65 93.35 87.68 1.41 98.35 84.41 92.84 88.43 1.25 

Naïve 

Bayes 

20 52.28 82.21 16.75 27.83 4.42 70.69 79.02 22.71 35.29 3.27 

50 52.57 82.72 16.65 27.72 4.19 71.04 79.93 22.71 35.37 3.06 
80 52.71 82.69 16.79 27.91 4.21 71.55 80.01 22.8 35.48 2.98 

Adaboost 20 61.34 61.88 12.27 20.49 5.15 91.21 14.99 34.75 20.95 6.83 

50 60.03 65.65 12.29 20.7 4.74 94.4 52.21 67.52 58.89 3.9 
80 91.74 23.22 50.72 31.86 6.64 56.66 70.25 11.65 19.99 4.28 

XGBoost 20 95.14 38.58 100 55.68 5.01 96.61 57.74 97.89 72.64 3.45 

50 95.2 38.37 100 55.46 4.95 96.68 57.75 98.13 72.71 3.39 
80 95.16 38.02 100 55.09 4.99 96.66 57.46 98.46 72.57 3.42 

 

From the test results using the IoTID20 dataset, the Naïve Bayes model produced an accuracy of 52–86%, 

whereas when testing is carried out with the NF-ToN-IoT-V2, the Naïve Bayes model could only produce an 

Algorithm 

Performance Metrics (%) 

𝒌⁡ = ⁡𝟑𝟓 

Test size 

(%) 

Acc Prec Recall F1 score FPR 

Random Forest 20 96.58 99.54 91.73 95.48 0.27 

50 96.57 99.54 91.71 95.47 0.27 

80 96.57 99.54 91.7 95.46 0.27 

Decision Tree 20 96.05 98.91 91.13 94.86 0.67 
50 96 98.87 91.08 94.82 0.69 

80 95.95 98.8 91.01 94.75 0.74 

Naïve Bayes 20 50.61 2.07 88.74 4.06 49.91 
50 50.35 2.08 88.52 4.07 50.17 

80 50.38 2.18 85.28 4.27 50.15 

Adaboost 20 59.65 9.71 50.28 16.27 39.56 
50 61.54 9.86 59.43 16.92 38.31 

80 55.53 10.46 43.25 16.85 43.04 

XGBoost 20 88.68 84.87 86.57 85.71 9.96 
50 88.67 84.88 86.55 85.71 9.95 

80 88.78 84.97 86.66 85.81 9.85 
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accuracy of 14–54%. The size of the dataset was one of the factors that led to this result. When trained and 

tested using the large NF-ToN-IoT-V2 with 16,940,496 instances, NB does not produce effective system 

performance. Also, the research results from the experiment using the NF-ToN-IoT-V2 with 𝑘⁡ = ⁡35 and a 

test size of 20% showed that the number of detected FPs was 1,195,145, while the numbers of TP and TN were 

25,306 and 1,199,676, respectively. This condition indicated a reasonably high FP value compared with the 

TP value.  

Table 5. IoTID20 dataset results of evaluating the model with 𝑘 = 59 

Algorithm 

Performance Metrics (%) 

𝒌⁡ = ⁡𝟓𝟗 

Test size (%) Acc Prec Recall F1 score FPR 

Random Forest 20 98.89 87.62 97.28 92.2 0.987 

50 98.84 86.82 97.25 91.74 1.043 

80 98.85 86.76 97.3 91,73 1.04 
Decision Tree 20 98.53 84.02 95.97 89.6 1.29 

50 98.54 84.42 95.36 89.56 1.24 

80 98.33 84.19 92.76 88.27 1.26 
Naïve Bayes 20 85.96 73.29 41.05 52.62 3.51 

50 86.2 73.64 41.06 52.73 3.19 

80 86.2 73.61 41.15 52.79 3.4 
Adaboost 20 91.58 28.24 44.48 34.55 5.95 

50 93.74 34.17 71.58 46.25 5.39 

80 43.26 79.84 59.94 37.9 1.85 
XGBoost 20 96.01 54.82 89.83 68.1 3.69 

50 96.65 57.18 98.58 72.38 3.43 

80 96.71 57.98 98.59 73.02 3.38 

 

We also conducted training and testing without feature selection stages to see the significance of 

performance between model developments with (w/ FS) and without feature selection (w/o FS). We summarize 

the highest success rate that the machine learning model achieved when tested using feature selection and 

contrast it with the outcomes of experiments conducted without feature selection. The comparison of the results 

shown in Fig. 6 and Fig. 7 indicated that the system built with data processing through feature selection 

produces better performances than those without feature selection. The feature selection process eliminates 

features considered to not provide important information for the model training and testing process. These 

irrelevant features can be regarded as noise, so that they can impact the algorithm when learning more 

efficiently and accurately.  Irrelevant features make it difficult for the model to recognize correct patterns in 

the data, because the signal (important information) is mixed with noise (unimportant or misleading 

information). Although the increase in accuracy was not so significant in this study, it still shows that feature 

selection has quite an impact on the accuracy of the attack detection system.  

 

 
Fig. 6. Performance results with and without feature selection for NF-ToN-IoT-V2 dataset 
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Fig. 7. IoTID20 dataset performance results with and without feature selection 

 We conducted a comparative analysis of the training and testing duration of the model with and without 

the standard feature selection techniques. We determined the test size in each experiment to compare the results 

of measuring the training and testing times. The selected test size was 80% of the dataset, so for NF-ToN-IoT-

V2, the total sample tested was 13,552,397, while for IoTID20 dataset, it was 500,332 instances. The results 

of training and testing time measurements are presented in Table 6 and Table 7. Fig. 8 provide a more explicit 

comparison of the measurement results. 

 

Table 6. The testing results for the NF-ToN-IoT-V2 dataset with and without feature selection 
Feature 

Selection 

Training time (second), test size 80% Testing time (second), test size 80% 

RF  DT NB Adaboost XGBoost RF DT NB Adaboost XGBoost 

𝑤𝑖𝑡ℎ 935.32  20.71 6.33 363.57 259.9 189.26 4.53 50.46 183.57 8.8 

𝑤𝑖𝑡ℎ𝑜𝑢𝑡 1007.29 20.97 6.51 373.02 273.67 196.35 4.87 51.37 198.44 11.41 

 

Table 7. The testing results for the IoTID20 dataset with and without feature selection 
Feature 

Selection 

Training time (second), test size 80% Testing time (second), test size 80% 

RF DT NB Adaboost XGBoost RF DT NB Adaboost XGBoost 

𝑤𝑖𝑡ℎ 24.17 0.87 0.19 12.49 5.24 2.54 0.19 0.59 2.78 0.28 

𝑤𝑖𝑡ℎ𝑜𝑢𝑡 33.2 1.22 0.29 16.06 7.43 3.08 0.27 1.14 3.98 0.36 

 

 Fig. 8 shows the results of training and testing time measurements for NF-ToN-IoT-V2 and IoTID20 

dataset. The results show that the RF model produced the longest training time, and the NB model produced 

the shortest. The RF model also required longer testing time than the other models. It classified 13,552,397 

instances within 189.26 𝑠, which means ≈ ⁡71,607 instances within 1 𝑠. On the other hand, the DT model 

produced the shortest testing time and could classify ≈ ⁡2,991,699 instances in 1 𝑠. The RF model excelled in 

accuracy, precision, recall, F1 score, and FPR because it could produce the best performance. In contrast, the 

DT model excelled in training and testing time because it could classify samples in the shortest time (0.334⁡𝜇𝑠 

for one instance). Like the time measurement on the IoTID20 dataset, RF requires more training time than the 

other models, while the NB model requires the least training time. When testing using 80% of the IoTID20 

dataset, the performance of the DT model still outperformed it by producing the shortest testing time. The DT 

model could classify 500,332 samples in 0.19 𝑠 or detect 1 sample in 0.38⁡𝜇𝑠. 

 In addition, we investigated and compared the results of training and testing time measurements for those 

selected for features and those not selected for features. In testing with feature selection, we selected data 𝑘⁡ =
⁡35 with a test size of 80% for NF-ToN-IoT-V2 and 𝑘⁡ = ⁡59 with a test size of 80% for IoTID20. We choose 

the same size at 80% of the entire dataset for tests without feature selection. Machine learning models required 

a longer time to train and test datasets without feature selection. In other words, applying feature selection 

using the Chi-square algorithm effectively reduced ML models' training and testing time. 
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 In the test without feature selection, the DT model detected attacks in 80% of the IoTID20 dataset of 

500,332 instances in 0.27⁡𝑠, whereas, with feature selection, the RF took only 0.19⁡𝑠. Also, when tested on the 

80% NF-ToN-IoT-V2 dataset, DT could classify 13,552,397 instances in 4.53⁡𝑠 with feature selection, but it 

took 4.87⁡𝑠 without it. With the feature selection stage, adaBoost and XGBoost were able to classify 

13,552,397 instances in 183.57⁡𝑠 and 8.8⁡𝑠, whereas, without feature selection, AdaBoost and XGBoost 

needed 198.44⁡𝑠 and 11.41⁡𝑠, respectively. By conducting FS, the RF model took 935.32⁡𝑠 to train the NF-

ToN-IoT-V2 dataset with 𝑘⁡ = ⁡35, whereas, without FS, it was 1007.29⁡𝑠. The RF model classified 80% of 

the NF-ToN-IoT-V2 without FS for 196.35⁡𝑠, whereas if using FS with 𝑘⁡ = ⁡35, the time required was 

189.26⁡𝑠. 

 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Training and testing time comparison with and without feature selection on NF-ToN-IoT-V2 and 

IoTID20 datasets. Feature selection reduces computation time, supporting efficient deployment in real-time 

IoT systems.  

 

 The reduction of training and testing time indicates better computational efficiency Fig. 8. The balance 

between computational efficiency and model complexity must be considered during the actual implementation 

of IoT systems because many IoT devices operate in resource-limited environments, such as low battery power, 

simple processors, and memory limitations. The findings indicate that using chi-square feature selection 

techniques can decrease the dimensionality of the dataset and enhance the efficiency of training and testing 

time. This selection process also indirectly impacts energy resource consumption. So, this is important in IoT 

systems requiring fast response and limited resources, such as real-time security devices and systems. Despite 

the reduction in training time, the accuracy rate remains high (achieved by RF with a value above 95%), 

indicating that the model has become more efficient without reducing its detection ability. The short training 

time allows the model to be developed and quickly adapted to new attack patterns.  

 Along with current technology development, IoT applications are predicted to generate much greater 

traffic in the coming years. Of course, it will also impact the increase in cybercrime: the more cybercrime 

increases, the more diverse the attacks are. Therefore, a short and efficient training time is needed to develop 

and update the model to be more adaptive to new attack patterns that are developing dynamically. A shorter 

training duration can save computing resources, namely CPU, RAM, and energy resources. Running the model 

on IoT devices with limited power and capabilities is crucial. Minimizing testing duration is essential for the 

rapid identification and response to risks. The more rapidly a system identifies an attack, the less the danger of 

system failure, data breach, or service interruption diminishes. For example, in a smart healthcare system, rapid 

detection enables instant identification and cessation of attacks on medical devices, thereby averting extensive 

harm. Similarly, early detection of an attack on the power grid in a smart grid allows stakeholders to take quick 

action before a blackout or widespread system failure occurs.  

 Furthermore, learning techniques also must be considered to balance computational efficiency and model 

complexity. Artificial Intelligence (AI), primarily through Deep Learning (DL) and Machine Learning (ML) 

approaches, has become an essential solution in intrusion detection systems (IDS) for cybersecurity, including 

in IoT environments. However, its implementation faces challenges due to power and memory limitations on 

 
(a) 

 
(b) 



 Sriwijaya Electrical and Computer Engineering Journal (SELCO) 

Vol. 1, No. 2, September 2024, pp. 64-76 

DOI: 10.62420/selco.v1i2.7 

  74 

  

 

Enhancing IoT Intrusion Detection with Chi-Square Feature Selection (Nadia Thereza, et al) 

IoT devices. Although effective in managing complex data and providing high accuracy, DL algorithms require 

larger resources and longer testing and training times. In contrast, ML algorithms are lighter in terms of 

complexity, require shorter training times, and are more efficient to implement in resource-limited IoT systems. 

Therefore, we choose an efficient and lightweight security approach that adapts to the character of the IoT 

network by using machine learning algorithms and implementing feature selection. 

 For future research directions, we propose a hybrid method, developing an intrusion detection system 

(IDS) that employs classification and clustering algorithms, to enhance accuracy and significantly reduce 

training and testing (detection) time in multi-class classification scenarios. The dataset will first be grouped 

using a clustering algorithm, then each group will be trained using a machine learning classification algorithm 

so that more specific detection models will be produced. This approach is considered adequate because some 

classification models have limitations in detecting new attacks. We expect the built IDS to efficiently group 

data and remain adaptive to unknown threats by combining supervised (classification) and unsupervised 

(clustering) methods. 

 

4. CONCLUSION 

This study evaluated the performance of various machine learning algorithms, Random Forest, Decision 

Tree, Naïve Bayes, AdaBoost, and XGBoost, in building intrusion detection models for IoT networks using 

real datasets: NF-ToN-IoT-V2 and IoTID20. Applying the Chi-Square feature selection effectively reduces 

irrelevant attributes, improving detection performance and computational efficiency. Among all models, 

Random Forest consistently achieved the highest accuracy, 96.58% for NF-ToN-IoT-V2 and 98.89% for 

IoTID20. Compared to the Decision Tree (DT), the Random Forest (RF) model produces higher accuracy. This 

is because RF is built from a set of decision trees. Combining many decision trees to make decisions makes 

RF more robust to errors from individual trees. Meanwhile, the Decision Tree model outperforms other 

algorithms regarding training and testing time, highlighting its suitability for time-sensitive and resource-

constrained environments.  

The actual implementation of IDS for IoT networks should consider the balance between computational 

efficiency and model complexity, as numerous IoT devices operate in resource-limited environments. In this 

study, the chi-square feature selection technique enhances the accuracy and efficiency of training and testing 

time. The RF model that outperforms in terms of accuracy performance increases its accuracy by up to 0.42% 

on the NF-ToN-IoT-V2 testing and 0.16% on the IoTID20 testing by implementing the Chi-Square algorithm. 

The DT model with the fastest training and testing time reduces its time utilization by 6.98% on the NF-ToN-

IoT-V2 testing and 29.63% on the IoTID20 testing through feature selection.  

Our proposed future study is combining classification and clustering techniques to improve accuracy and 

reduce training and testing (detection) time in multi-class classification scenarios for IDS. After a clustering 

technique groups the dataset, a machine learning classification algorithm will train each group to create more 

specialized detection models. We hope this future study can improve detection accuracy and reduce training 

and attack detection duration. 
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